
SO_REUSEPORT
Scaling Techniques for Servers with High

Connection Rates

Ying Cai
ycai@google.com

Problems

Servers with high connection/transaction rates
TCP servers, e.g. web server
UDP servers, e.g. DNS server

On multi-core systems, using multiple
servicing threads, e.g. one thread per
servicing core.

The single server socket becomes
bottleneck
Cache line bounces
Hard to achieve load balance
Things will only get worse with more cores

Scenario

Single TCP Server Socket - Solution 1

Use a listener thread to dispatch established
connections to server threads

The single listener thread becomes
bottleneck due to high connection rate
Cache misses of the socket structure
Load balance is not an issue here

Single TCP Server Socket - Solution 2

All server threads accept() on the single
server socket

Lock contention on the server socket
Cache line bouncing of the server socket
Loads (number of accepted connections
per thread) are usually not balanced

Larger latency on busier CPUs
It can almost be achieved by accept()
at random intervals, but it is hard to
decide the interval value, and may
introduce latency.

Single UDP Server Socket

Have same issues as TCP
SO_REUSEADDR allows multiple UDP
sockets bind() to the same local IP address
and UDP port, but it will not distribute
packets among them. It is not designed to
solve this problem.

New Socket Option - SO_REUSEPORT

Allow multiple sockets bind()/listen() to the
same local address and TCP/UDP port

Every thread can have its own server socket
No locking contention on the server socket

Load balance is achieved by kernel - kernel
randomly picks a socket to receive the TCP
connection or UDP request
For security reason, all these sockets must be
opened by the same user, so other users can
not "steal" packets

SO_REUSEPORT

How to enable

1. sysctl net.core.allow_reuseport=1
2. Before bind(), setsockopt SO_REUSEADDR and
SO_REUSEPORT
3. Then the same as a normal socket - bind()/listen()
/accept()

Status

Developed by Tom Herbert at Google
Submitted to upstream, but has not been
accepted yet
Deployed internally at Google

Will be deployed on Google Front End
servers
Already deployed on Google DNS servers.
Some test shows change from 50k
request/s with some losses to 80k
request/s without loss.

Known Issues - Hashing

Hash is based on 4 tuples and the number of
server sockets, so if the number is changed
(server socket opened/closed), a packet may
be hash into a different socket

TCP connection can not be established
Solution 1: Use fixed number of server
sockets
Solution 2: Allow multiple server sockets to
share the TCP request table
Solution 3: Do not use hash, pick local server
socket which is on the same CPU

Known Issues - Cache

Have not solved the cache line
bouncing problem completely

Solved: The accepting thread is the
processing thread
Unsolved: The processed packets can be
from another CPU

Instead of distribute randomly, deliver to
the thread/socket on the same CPU

Silo'ing

Interactions with RFS/RPS/XPS-mq - TCP

Bind server theads to CPUs
RPS (Receive Packet Steering) distributes the
TCP SYN packets to CPUs
TCP connection is accept() by the server
thread bound to the CPU
Use XPS-mq (Transmit Packet Steering for
multiqueue) to send replies using the transmit
queue associated with this CPU
Either RFS (Receive Flow Steering) or RPS
can guarantee that succeeding packets of the
same connection will be delivered to that CPU

Interactions with RFS/RPS/XPS-mq - TCP

RFS/RPS is not needed is RxQs are set up
per CPU
But hardware may not support as many RxQs
as CPUs

Interactions with RFS/RPS/XPS-mq - UDP

Similar to TCP

Interactions with scheduler

Some scheduler mechanism may harm the
performance

Affine wakeup - too aggressive in certain
conditions, causing cache misses

Other Scalability Issues

Locking contentions
HTB Qdisc

Questions?

